/* pybind11/stl.h: Transparent conversion for STL data types Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #include "pybind11.h" #include <set> #include <unordered_set> #include <map> #include <unordered_map> #include <iostream> #include <list> #include <valarray> #if defined(_MSC_VER) #pragma warning(push) #pragma warning(disable: 4127) // warning C4127: Conditional expression is constant #endif #ifdef __has_include // std::optional (but including it in c++14 mode isn't allowed) # if defined(PYBIND11_CPP17) && __has_include(<optional>) # include <optional> # define PYBIND11_HAS_OPTIONAL 1 # endif // std::experimental::optional (but not allowed in c++11 mode) # if defined(PYBIND11_CPP14) && (__has_include(<experimental/optional>) && \ !__has_include(<optional>)) # include <experimental/optional> # define PYBIND11_HAS_EXP_OPTIONAL 1 # endif // std::variant # if defined(PYBIND11_CPP17) && __has_include(<variant>) # include <variant> # define PYBIND11_HAS_VARIANT 1 # endif #elif defined(_MSC_VER) && defined(PYBIND11_CPP17) # include <optional> # include <variant> # define PYBIND11_HAS_OPTIONAL 1 # define PYBIND11_HAS_VARIANT 1 #endif NAMESPACE_BEGIN(PYBIND11_NAMESPACE) NAMESPACE_BEGIN(detail) /// Extracts an const lvalue reference or rvalue reference for U based on the type of T (e.g. for /// forwarding a container element). Typically used indirect via forwarded_type(), below. template <typename T, typename U> using forwarded_type = conditional_t< std::is_lvalue_reference<T>::value, remove_reference_t<U> &, remove_reference_t<U> &&>; /// Forwards a value U as rvalue or lvalue according to whether T is rvalue or lvalue; typically /// used for forwarding a container's elements. template <typename T, typename U> forwarded_type<T, U> forward_like(U &&u) { return std::forward<detail::forwarded_type<T, U>>(std::forward<U>(u)); } template <typename Type, typename Key> struct set_caster { using type = Type; using key_conv = make_caster<Key>; bool load(handle src, bool convert) { if (!isinstance<pybind11::set>(src)) return false; auto s = reinterpret_borrow<pybind11::set>(src); value.clear(); for (auto entry : s) { key_conv conv; if (!conv.load(entry, convert)) return false; value.insert(cast_op<Key &&>(std::move(conv))); } return true; } template <typename T> static handle cast(T &&src, return_value_policy policy, handle parent) { policy = return_value_policy_override<Key>::policy(policy); pybind11::set s; for (auto &&value : src) { auto value_ = reinterpret_steal<object>(key_conv::cast(forward_like<T>(value), policy, parent)); if (!value_ || !s.add(value_)) return handle(); } return s.release(); } PYBIND11_TYPE_CASTER(type, _("Set[") + key_conv::name() + _("]")); }; template <typename Type, typename Key, typename Value> struct map_caster { using key_conv = make_caster<Key>; using value_conv = make_caster<Value>; bool load(handle src, bool convert) { if (!isinstance<dict>(src)) return false; auto d = reinterpret_borrow<dict>(src); value.clear(); for (auto it : d) { key_conv kconv; value_conv vconv; if (!kconv.load(it.first.ptr(), convert) || !vconv.load(it.second.ptr(), convert)) return false; value.emplace(cast_op<Key &&>(std::move(kconv)), cast_op<Value &&>(std::move(vconv))); } return true; } template <typename T> static handle cast(T &&src, return_value_policy policy, handle parent) { dict d; return_value_policy policy_key = return_value_policy_override<Key>::policy(policy); return_value_policy policy_value = return_value_policy_override<Value>::policy(policy); for (auto &&kv : src) { auto key = reinterpret_steal<object>(key_conv::cast(forward_like<T>(kv.first), policy_key, parent)); auto value = reinterpret_steal<object>(value_conv::cast(forward_like<T>(kv.second), policy_value, parent)); if (!key || !value) return handle(); d[key] = value; } return d.release(); } PYBIND11_TYPE_CASTER(Type, _("Dict[") + key_conv::name() + _(", ") + value_conv::name() + _("]")); }; template <typename Type, typename Value> struct list_caster { using value_conv = make_caster<Value>; bool load(handle src, bool convert) { if (!isinstance<sequence>(src)) return false; auto s = reinterpret_borrow<sequence>(src); value.clear(); reserve_maybe(s, &value); for (auto it : s) { value_conv conv; if (!conv.load(it, convert)) return false; value.push_back(cast_op<Value &&>(std::move(conv))); } return true; } private: template <typename T = Type, enable_if_t<std::is_same<decltype(std::declval<T>().reserve(0)), void>::value, int> = 0> void reserve_maybe(sequence s, Type *) { value.reserve(s.size()); } void reserve_maybe(sequence, void *) { } public: template <typename T> static handle cast(T &&src, return_value_policy policy, handle parent) { policy = return_value_policy_override<Value>::policy(policy); list l(src.size()); size_t index = 0; for (auto &&value : src) { auto value_ = reinterpret_steal<object>(value_conv::cast(forward_like<T>(value), policy, parent)); if (!value_) return handle(); PyList_SET_ITEM(l.ptr(), (ssize_t) index++, value_.release().ptr()); // steals a reference } return l.release(); } PYBIND11_TYPE_CASTER(Type, _("List[") + value_conv::name() + _("]")); }; template <typename Type, typename Alloc> struct type_caster<std::vector<Type, Alloc>> : list_caster<std::vector<Type, Alloc>, Type> { }; template <typename Type, typename Alloc> struct type_caster<std::list<Type, Alloc>> : list_caster<std::list<Type, Alloc>, Type> { }; template <typename ArrayType, typename Value, bool Resizable, size_t Size = 0> struct array_caster { using value_conv = make_caster<Value>; private: template <bool R = Resizable> bool require_size(enable_if_t<R, size_t> size) { if (value.size() != size) value.resize(size); return true; } template <bool R = Resizable> bool require_size(enable_if_t<!R, size_t> size) { return size == Size; } public: bool load(handle src, bool convert) { if (!isinstance<list>(src)) return false; auto l = reinterpret_borrow<list>(src); if (!require_size(l.size())) return false; size_t ctr = 0; for (auto it : l) { value_conv conv; if (!conv.load(it, convert)) return false; value[ctr++] = cast_op<Value &&>(std::move(conv)); } return true; } template <typename T> static handle cast(T &&src, return_value_policy policy, handle parent) { list l(src.size()); size_t index = 0; for (auto &&value : src) { auto value_ = reinterpret_steal<object>(value_conv::cast(forward_like<T>(value), policy, parent)); if (!value_) return handle(); PyList_SET_ITEM(l.ptr(), (ssize_t) index++, value_.release().ptr()); // steals a reference } return l.release(); } PYBIND11_TYPE_CASTER(ArrayType, _("List[") + value_conv::name() + _<Resizable>(_(""), _("[") + _<Size>() + _("]")) + _("]")); }; template <typename Type, size_t Size> struct type_caster<std::array<Type, Size>> : array_caster<std::array<Type, Size>, Type, false, Size> { }; template <typename Type> struct type_caster<std::valarray<Type>> : array_caster<std::valarray<Type>, Type, true> { }; template <typename Key, typename Compare, typename Alloc> struct type_caster<std::set<Key, Compare, Alloc>> : set_caster<std::set<Key, Compare, Alloc>, Key> { }; template <typename Key, typename Hash, typename Equal, typename Alloc> struct type_caster<std::unordered_set<Key, Hash, Equal, Alloc>> : set_caster<std::unordered_set<Key, Hash, Equal, Alloc>, Key> { }; template <typename Key, typename Value, typename Compare, typename Alloc> struct type_caster<std::map<Key, Value, Compare, Alloc>> : map_caster<std::map<Key, Value, Compare, Alloc>, Key, Value> { }; template <typename Key, typename Value, typename Hash, typename Equal, typename Alloc> struct type_caster<std::unordered_map<Key, Value, Hash, Equal, Alloc>> : map_caster<std::unordered_map<Key, Value, Hash, Equal, Alloc>, Key, Value> { }; // This type caster is intended to be used for std::optional and std::experimental::optional template<typename T> struct optional_caster { using value_conv = make_caster<typename T::value_type>; template <typename T_> static handle cast(T_ &&src, return_value_policy policy, handle parent) { if (!src) return none().inc_ref(); policy = return_value_policy_override<typename T::value_type>::policy(policy); return value_conv::cast(*std::forward<T_>(src), policy, parent); } bool load(handle src, bool convert) { if (!src) { return false; } else if (src.is_none()) { return true; // default-constructed value is already empty } value_conv inner_caster; if (!inner_caster.load(src, convert)) return false; value.emplace(cast_op<typename T::value_type &&>(std::move(inner_caster))); return true; } PYBIND11_TYPE_CASTER(T, _("Optional[") + value_conv::name() + _("]")); }; #if PYBIND11_HAS_OPTIONAL template<typename T> struct type_caster<std::optional<T>> : public optional_caster<std::optional<T>> {}; template<> struct type_caster<std::nullopt_t> : public void_caster<std::nullopt_t> {}; #endif #if PYBIND11_HAS_EXP_OPTIONAL template<typename T> struct type_caster<std::experimental::optional<T>> : public optional_caster<std::experimental::optional<T>> {}; template<> struct type_caster<std::experimental::nullopt_t> : public void_caster<std::experimental::nullopt_t> {}; #endif /// Visit a variant and cast any found type to Python struct variant_caster_visitor { return_value_policy policy; handle parent; using result_type = handle; // required by boost::variant in C++11 template <typename T> result_type operator()(T &&src) const { return make_caster<T>::cast(std::forward<T>(src), policy, parent); } }; /// Helper class which abstracts away variant's `visit` function. `std::variant` and similar /// `namespace::variant` types which provide a `namespace::visit()` function are handled here /// automatically using argument-dependent lookup. Users can provide specializations for other /// variant-like classes, e.g. `boost::variant` and `boost::apply_visitor`. template <template<typename...> class Variant> struct visit_helper { template <typename... Args> static auto call(Args &&...args) -> decltype(visit(std::forward<Args>(args)...)) { return visit(std::forward<Args>(args)...); } }; /// Generic variant caster template <typename Variant> struct variant_caster; template <template<typename...> class V, typename... Ts> struct variant_caster<V<Ts...>> { static_assert(sizeof...(Ts) > 0, "Variant must consist of at least one alternative."); template <typename U, typename... Us> bool load_alternative(handle src, bool convert, type_list<U, Us...>) { auto caster = make_caster<U>(); if (caster.load(src, convert)) { value = cast_op<U>(caster); return true; } return load_alternative(src, convert, type_list<Us...>{}); } bool load_alternative(handle, bool, type_list<>) { return false; } bool load(handle src, bool convert) { // Do a first pass without conversions to improve constructor resolution. // E.g. `py::int_(1).cast<variant<double, int>>()` needs to fill the `int` // slot of the variant. Without two-pass loading `double` would be filled // because it appears first and a conversion is possible. if (convert && load_alternative(src, false, type_list<Ts...>{})) return true; return load_alternative(src, convert, type_list<Ts...>{}); } template <typename Variant> static handle cast(Variant &&src, return_value_policy policy, handle parent) { return visit_helper<V>::call(variant_caster_visitor{policy, parent}, std::forward<Variant>(src)); } using Type = V<Ts...>; PYBIND11_TYPE_CASTER(Type, _("Union[") + detail::concat(make_caster<Ts>::name()...) + _("]")); }; #if PYBIND11_HAS_VARIANT template <typename... Ts> struct type_caster<std::variant<Ts...>> : variant_caster<std::variant<Ts...>> { }; #endif NAMESPACE_END(detail) inline std::ostream &operator<<(std::ostream &os, const handle &obj) { os << (std::string) str(obj); return os; } NAMESPACE_END(PYBIND11_NAMESPACE) #if defined(_MSC_VER) #pragma warning(pop) #endif