""" Google BigQuery support """ def _try_import(): # since pandas is a dependency of pandas-gbq # we need to import on first use try: import pandas_gbq except ImportError: # give a nice error message raise ImportError("Load data from Google BigQuery\n" "\n" "the pandas-gbq package is not installed\n" "see the docs: https://pandas-gbq.readthedocs.io\n" "\n" "you can install via pip or conda:\n" "pip install pandas-gbq\n" "conda install pandas-gbq -c conda-forge\n") return pandas_gbq def read_gbq(query, project_id=None, index_col=None, col_order=None, reauth=False, verbose=True, private_key=None, dialect='legacy', **kwargs): r"""Load data from Google BigQuery. The main method a user calls to execute a Query in Google BigQuery and read results into a pandas DataFrame. This function requires the `pandas-gbq package `__. Authentication to the Google BigQuery service is via OAuth 2.0. - If "private_key" is not provided: By default "application default credentials" are used. If default application credentials are not found or are restrictive, user account credentials are used. In this case, you will be asked to grant permissions for product name 'pandas GBQ'. - If "private_key" is provided: Service account credentials will be used to authenticate. Parameters ---------- query : str SQL-Like Query to return data values project_id : str Google BigQuery Account project ID. index_col : str (optional) Name of result column to use for index in results DataFrame col_order : list(str) (optional) List of BigQuery column names in the desired order for results DataFrame reauth : boolean (default False) Force Google BigQuery to reauthenticate the user. This is useful if multiple accounts are used. verbose : boolean (default True) Verbose output private_key : str (optional) Service account private key in JSON format. Can be file path or string contents. This is useful for remote server authentication (eg. jupyter iPython notebook on remote host) dialect : {'legacy', 'standard'}, default 'legacy' 'legacy' : Use BigQuery's legacy SQL dialect. 'standard' : Use BigQuery's standard SQL, which is compliant with the SQL 2011 standard. For more information see `BigQuery SQL Reference `__ **kwargs : Arbitrary keyword arguments configuration (dict): query config parameters for job processing. For example: configuration = {'query': {'useQueryCache': False}} For more information see `BigQuery SQL Reference `__ Returns ------- df: DataFrame DataFrame representing results of query """ pandas_gbq = _try_import() return pandas_gbq.read_gbq( query, project_id=project_id, index_col=index_col, col_order=col_order, reauth=reauth, verbose=verbose, private_key=private_key, dialect=dialect, **kwargs) def to_gbq(dataframe, destination_table, project_id, chunksize=10000, verbose=True, reauth=False, if_exists='fail', private_key=None): pandas_gbq = _try_import() pandas_gbq.to_gbq(dataframe, destination_table, project_id, chunksize=chunksize, verbose=verbose, reauth=reauth, if_exists=if_exists, private_key=private_key)